
STAM: A Spatiotemporal Aggregation Method for Graph Neural
Network-based Recommendation

Zhen Yang∗
DCST, Tsinghua University

Beijing, China
yangz21@mails.tsinghua.edu.cn

Ming Ding∗
DCST, Tsinghua University

Beijing, China
dm18@mails.tsinghua.edu.cn

Bin Xu§
DCST, Tsinghua University

Beijing, China
xubin@tsinghua.edu.cn

Hongxia Yang
Alibaba Group

Hangzhou, China
yang.yhx@alibaba-inc.com

Jie Tang§
DCST, Tsinghua University

Beijing, China
jietang@tsinghua.edu.cn

ABSTRACT
Graph neural network-based recommendation systems are blossom-
ing recently, and its core component is aggregation methods that
determine neighbor embedding learning. Prior arts usually focus
on how to aggregate information from the perspective of spatial
structure information, but temporal information about neighbors
is left insufficiently explored.

In this work, we propose a spatiotemporal aggregation method
STAM to efficiently incorporate temporal information into neighbor
embedding learning. STAM generates spatiotemporal neighbor em-
beddings from the perspectives of spatial structure information and
temporal information, facilitating the development of aggregation
methods from spatial to spatiotemporal. STAM utilizes the Scaled
Dot-Product Attention to capture temporal orders of one-hop neigh-
bors and employs multi-head attention to perform joint attention
over different latent subspaces. We utilize STAM for GNN-based
recommendation to learn users and items embeddings. Extensive ex-
periments demonstrate that STAM brings significant improvements
on GNN-based recommendation compared with spatial-based ag-
gregation methods, e.g., 24% for MovieLens, 8% for Amazon, and
13% for Taobao in terms of𝑀𝑅𝑅@20.

CCS CONCEPTS
•Computingmethodologies→Machine learning approaches;
• Networks → Network algorithms.

KEYWORDS
Spatiotemporal Aggregation Method; Self-Attention; GNN-based
Recommendation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3512041

ACM Reference Format:
Zhen Yang, Ming Ding, Bin Xu, Hongxia Yang, Jie Tang. 2022. STAM: A
Spatiotemporal Aggregation Method for Graph Neural Network-based Rec-
ommendation. In Proceedings of the ACM Web Conference 2022 (WWW ’22),
April 25–29, 2022, Virtual Event, Lyon, France. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3485447.3512041

1 INTRODUCTION
Recommender systems are a critical tool to perform personalized
information filtering [6, 56], having been applied to many online
services. The essence of recommendation is to learn latent represen-
tations for users and items from the past user-item interactions and
predict items that a user interacts with in the future. Most works
take recommendation as the matrix completion task [25]. Collabora-
tive filtering (CF) [37, 38] is a traditional recommendation method
to predict scores between users and items. Matrix factorization (MF)
[9, 32] learns the latent vectors for users and items to reconstruct
the interaction matrix. Due to the success of deep learning, recent
works use neural networks[8, 21], such as multi-layer perceptions
(MLP), to capture the nonlinear interaction between users and items
[18]. Recent years have witnessed tremendous interest in graph
neural networks (GNNs) [14, 24, 44], and its information propaga-
tion mechanism improves the downstream tasks, demonstrating
promising prospects in many challenging tasks.

Owing to the superiority of graph neural networks in learning
on graph data, GNN-based recommendations [1, 17, 48, 56] model
the user-item interactions as a graph and leverage GNNs to incorpo-
rate the spatial structure information into the embeddings. Massive
GNN-based recommendation works have investigated good ag-
gregation methods to learn the embeddings for users and items
from the perspective of spatial structure information. Existing ag-
gregation methods roughly fall into four groups [52]: (1)“mean
pooling” treats the neighbors equally; (2) “degree normalization”
assigns weights to nodes based on the graph structure; (3) “attentive
pooling” differentiates the importance of neighbors with attention
mechanism and (4) “central node augmentation” considers the affin-
ity between nodes and uses the central node to filter the neighbors’
message. However, the abovementioned methods omit the neigh-
bor’s temporal information which is a vital signal that contributes

∗Equal contribution. Codes are available at https://github.com/zyang-16/STAM.
§Corresponding Authors.

https://doi.org/10.1145/3485447.3512041
https://doi.org/10.1145/3485447.3512041
https://github.com/zyang-16/STAM

WWW’22, April 25–29, 2022, Virtual Event, Lyon, France Yang and Ding, et al.

Figure 1: A motivating example of STAM, demonstrating the importance of temporal information for neighbor aggregation.

significantly to aggregation in GNN-based recommendations but is
not encoded in neighbor embedding learning.

In preceding GNN-based recommendations [1, 17, 48, 56], the
neighbor aggregation methods only touch upon spatial structure
information but ignore the neighbor’s temporal information and
cannot capture the user’s dynamic interests. The fundamental ca-
pability of the E-commerce platform is to collect abundant user’s
behavior history along with temporal information. However, the
previous aggregation methods in GNN-based recommendations
have not yet fully utilized this temporal information to learn high-
quality embeddings and only demonstrate the intrinsic interest of
users. To deal with the abovementioned issue, we integrate the
temporal information into the aggregation methods to facilitate the
development of aggregation from spatial to spatiotemporal.

To fully understand the motivation of this work, we give a moti-
vating example of STAM to show the important role of temporal
information in GNN-based recommendation. In Figure 1, we select
two users (Amy and Sherry) from the user’s behavior history to
build a user-item bipartite graph and a temporal-order graph for
GNN-based recommendation, respectively. In spatial-based aggre-
gation, the aggregated neighbor embeddings for Amy and Sherry
are identical because they interacted with the same items. Simi-
lar to LightGCN, we omit non-linear transformation and utilize
the aggregated neighbor embeddings as one-hop user embeddings.
Thus, the recommender recommends an identical item for Amy and
Sherry in spatial-based aggregation. However, recommended items
for Amy and Sherry are different in spatiotemporal-based aggrega-
tion. In spatiotemporal-based aggregation, we incorporate temporal
information into neighbor embedding learning, where temporal
orders play a vital role in capturing users’ dynamic interests and
user cluster changes over time.

In this work, we give prominence to the issue that temporal
information is still not utilized for neighbor aggregation in GNN-
based recommendation. Instead of directly aggregating neighbor’s
information from spatial structure, we propose a novel aggregation
method named SpatioTemporal AggregationMethod (STAM) to
integrate temporal information into neighbor embedding learning,
promoting the development of aggregation methods from spatial
to spatiotemporal. STAM generates spatiotemporal neighbor em-
beddings from the perspectives of spatial structure and temporal
order. In STAM, the Scaled Dot-Product Attention is applied to cap-
ture the temporal orders of one-hop neighbors. To further improve

the expressiveness of STAM, we learn multiple attention heads in
STAM that perform joint attention on various latent subspaces.

STAM cannot alter the framework of GNN-based recommen-
dation, which can be naturally plugged into existing GNN-based
recommendation models. We apply STAM for GNN-based recom-
mendation and compare its performance with representative GNN-
based and sequential recommendation models. The experimental
results show that STAM outperforms the state-of-the-art baselines,
such as average relative increase of 24% for MovieLens, 8% for Ama-
zon, and 13% for Taobao in terms of𝑀𝑅𝑅@20, showing the impor-
tance of temporal information for aggregation methods. Moreover,
we also conduct comparative experiments between STAM and five
representative aggregation methods (four spatial-based aggregators
and a BiLSTM aggregator) to verify the effectiveness of STAM.

To summarize, the main contributions of this work are as follows:
• We highlight the significance of temporal information for
neighbor aggregation in GNN-based recommendation, facili-
tating the development of aggregation methods from spatial
to spatiotemporal.
• We propose a novel aggregation method STAM to incorpo-
rate temporal information into neighbor embedding learning,
which can be naturally plugged into existing GNN-based rec-
ommendation models.
• We conduct extensive experiments to demonstrate the supe-
riority of STAM over spatial-based aggregation methods.

2 PRELIMINARIES AND PROBLEM
In this section, we first review the framework of GNN-based rec-
ommendation. We then give the detailed problem statement that
concerns the aggregation method with temporal information.

2.1 GNN-based recommendation
2.1.1 Embedding Layer. GNN-based recommendation models
maintain an item embedding matrix EV ∈ R𝑁×𝑑 and a user em-
bedding matrix EU ∈ R𝑀×𝑑 to project the one-hot representations
to low-dimensional representations, where 𝑀 and 𝑁 denote the
number of user nodes and item nodes. For any user 𝑢 (an item
𝑣), the look-up operation performs to obtain an embedding vector
e𝑢 ∈ R𝑑 (e𝑣 ∈ R𝑑), where 𝑑 denotes the embedding size. Such user
and item embedding matrices serve as an initial state and will be
updated by aggregation and propagation.

STAM: A Spatiotemporal Aggregation Method for Graph Neural Network-based Recommendation WWW’22, April 25–29, 2022, Virtual Event, Lyon, France

2.1.2 Embedding Aggregation Layer. The embedding aggrega-
tion layer is responsible for collecting and aggregating neighbors’
information, which is a significant component of GNN-based recom-
mendation [17, 48, 56]. In the user-item graph, there are two types
of aggregation operations: item aggregation and user aggregation:

n𝑢 = 𝑓𝑢←𝑣 (e𝑣 |𝑣 ∈ N𝑢),
n𝑣 = 𝑓𝑣←𝑢 (e𝑢 |𝑢 ∈ N𝑣).

(1)

where e𝑢 , e𝑣 are the initial embeddings of user 𝑢 and item 𝑣 , N𝑢
denotes the set of items interacted with the user 𝑢 (or 𝑢’s neighbors
in the user-item graph), and N𝑣 represents the set of users who
have interacted with the item 𝑣 (or 𝑣 ’s neighbors). n𝑢 /n𝑣 ∈ R𝑑 is
the aggregated neighbor embedding for user 𝑢/item 𝑣 . 𝑓 (·) is the
aggregation function.

2.1.3 Embedding Propagation Layer. To capture higher-order
interactions between user and item, multiple propagation layers
are stacked to propagate embeddings in the user-item graph. Let
h(𝑙)𝑢 and h(𝑙)𝑣 denote user 𝑢’s and item 𝑣 ’s embedding at the 𝑙-
th propagation layer, respectively. Thereafter, the embeddings in
(𝑙 +1)-th layer depends on two steps: an aggregation operation that
aggregates neighbors’ embeddings at 𝑙-th layer into a fixed-length
embedding vector n(𝑙+1) , an update step that takes the aggregated
neighbor embedding and its own embedding vector at 𝑙-th layer as
inputs, and utilizes update function 𝑔(·) to obtain the embeddings
at (𝑙 + 1)-th layer. Mathematically, the abovementioned two steps
could be defined as:

n(𝑙+1)𝑢 = 𝑓𝑢←𝑣 (h(𝑙)𝑣 |𝑣 ∈ N𝑢),

h(𝑙+1)𝑢 = 𝑔(n(𝑙+1)𝑢 ,h(𝑙)𝑢) .
(2)

Similarly, the item embedding at (𝑙 + 1)-th layer h(𝑙+1)𝑣 also be
updated by the abovementioned two steps.

2.1.4 Prediction Layer. Propagatingwith𝐿 layers, each user/item
gather multiple representations {h(1)𝑢 , · · · ,h(𝐿)𝑢 }/{h

(1)
𝑣 , · · · ,h(𝐿)𝑣 }.

The final user/item embedding e∗𝑢/e∗𝑣 is calculated by the fusion
function 𝑜 (·), which can be formulated as:

e∗𝑢 = 𝑜 (h(1)𝑢 , · · · ,h(𝐿)𝑢),

e∗𝑣 = 𝑜 (h
(1)
𝑣 , · · · ,h(𝐿)𝑣) .

(3)

Some works directly use the embedding in the last layer as the
final one [50] while some integrate the embeddings of all layers
with concatenation [48] or weighted-pooling operations [17].

Thereafter, the inner product is applied to estimate the user’s
preference towards the target item:

𝑟𝑢𝑣 = e∗𝑢
⊤e∗𝑣 (4)

Note that the inner product is also used as the similarity score for
recommendation to retrieve top-𝐾 candidate items.

2.1.5 Joint Training. Given a training sample (𝑢, 𝑣) with the
embedding vectors (e∗𝑢 , e∗𝑣), the likelihood of the user 𝑢 and the
interacted item 𝑣 can be formulated as:

𝑃𝜃 (𝑣 |𝑢) =
exp(e∗𝑢⊤e∗𝑣)∑

𝑣𝑛∈V exp(e∗𝑢⊤e∗𝑣𝑛)
=

exp(e∗𝑢⊤e∗𝑣)
exp(e∗𝑢⊤e∗𝑣) +

∑
𝑣𝑛∈V−𝑢 exp(e∗𝑢⊤e∗𝑣𝑛)

(5)

where V denotes the set of all items, V−𝑢 is the item set con-
taining items that have not interacted with the user 𝑢, 𝑣𝑛 denotes a
negative item that the user 𝑢 has not interacted with.

The loss function of GNN-based recommendation is to minimize
the following negative log-likelihood:

L =
∑︁
(𝑢,𝑣) ∈D

− log 𝑃𝜃 (𝑣 |𝑢) (6)

whereD denotes the all user-item interactions, that is, all observed
edges in the user-item graph.

However, the sum operator of equation (5) is computationally
expensive. Negative sampling acts as a critical point to deal with
this issue and speeds up the training process. The loss function is
usually simplified by negative sampling as:

L =
∑︁
(𝑢,𝑣) ∈D

− log exp(e∗𝑢⊤e∗𝑣)
exp(e∗𝑢⊤e∗𝑣) +

∑
𝑣𝑛∼𝑝𝑛 (·) exp(e∗𝑢

⊤e∗𝑣𝑛)
(7)

where 𝑣𝑛 ∼ 𝑝𝑛 (·) represents the negative sampling strategy pro-
posed in some advanced works [46, 55, 58], the number of sampled
negative items is much less than the number of total items.

2.2 Problem Statement
GNN-based recommendation transforms the interactions between
users and items into the bipartite graph and leverages graph learn-
ing approaches to obtain user/item embeddings. Aggregation meth-
ods play a decisive role in the information propagation mechanism
for GNN-based recommendation. However, prior works only fo-
cus on aggregating neighbors’ information from the perspective of
spatial structure information but ignore the temporal information.

Thus, we collect the temporal information from user’s behavior
history and build a user’s temporal order 𝑇𝑢 = {𝑣1, · · · , 𝑣𝑆 } and
an item’s temporal order 𝑇𝑣 = {𝑢1, · · · , 𝑢𝑆 } for a certain user-item
pair (𝑢, 𝑣), where 𝑆 is the number of one-hop neighbors and 𝑣𝑡 /𝑢𝑡
records the 𝑡-th interacted item/user. In this paper, we improve
the existing aggregation methods by leveraging such temporal
information, facilitating the development of aggregation methods
from spatial to spatiotemporal.

3 METHOD
STAM is a universal aggregation method that incorporates tem-
poral information into neighbor embedding learning, which can
be naturally plugged into existing GNN-based recommendation
models. Instead of aggregating neighbors’ information from spatial
structure, STAM simultaneously aggregates neighbors’ information
from the perspectives of spatial structure and temporal order of
one-hop neighbors.

In this section, we firstly present the proposed STAM to learn
spatiotemporal neighbor embeddings for each user-item pair (𝑢, 𝑣)
by leveraging temporal information. Then, we utilize STAM for
GNN-based recommendation to learn high-quality embeddings
for users and items. Thereafter, the optimization of STAM with
negative sampling is demonstrated. Finally, we give the model
analysis about the relation of STAM with previous related works
and give the analysis of time complexity for STAM.

WWW’22, April 25–29, 2022, Virtual Event, Lyon, France Yang and Ding, et al.

Figure 2: The overall architecture of STAM.

3.1 STAM
To incorporate temporal information into aggregation methods
for GNN-based recommendation models, we design a novel spa-
tiotemporal aggregation method (STAM) for neighbor embedding
learning. Figure 2 depicts the overall architecture of STAM, which
takes temporal orders 𝑇𝑢 and 𝑇𝑣 as input and outputs spatiotem-
poral neighbor embeddings generated from one-hop neighbors.
Specifically, we firstly construct two critical temporal orders from
the connected one-hop neighbors for each user-item pair (𝑢, 𝑣),
consisting of user’s temporal order 𝑇𝑢 = {𝑣1, · · · , 𝑣𝑆 } and item’s
temporal order𝑇𝑣 = {𝑢1, · · · , 𝑢𝑆 } where 𝑆 is the length of temporal
order. Then, the look-up operation is performed to obtain the initial
embeddings for each temporal order, i.e., temporal-order embed-
dings𝑋𝑢 = {e1𝑣, e2𝑣, · · · , e𝑆𝑣 } and𝑋𝑣 = {e1𝑢 , e2𝑢 , · · · , e𝑆𝑢 }, e𝑡𝑢/e𝑡𝑣 ∈ R𝑑
with dimensionality 𝑑 . Note that the inital embeddings e𝑡𝑢 and e𝑡𝑣
are obtained from the Embedding Layer mentioned in Section 2.1.

The foremost objective of STAM is to learn spatiotemporal neigh-
bor embeddings from one-hop neighbors for each user-item pair
(𝑢, 𝑣). To achieve this objective, we utilize the Scaled Dot-Product
Attention [43] which have become a critical part of sequence mod-
eling, taking the queries Q, keys K and values V as the input rep-
resentations. The queries, keys and values are projected into dif-
ferent spaces through linear projection matrices W𝑄 ∈ R𝑑×𝐷

′
,

W𝐾 ∈ R𝑑×𝐷
′
and W𝑉 ∈ R𝑑×𝐷

′
, respectively. Moreover, we also

employ the positional encoding [10] to encode temporal informa-
tion into the Scaled Dot-Product Attention, i.e., temporal orders
𝑇𝑢 and 𝑇𝑣 are equipped with absolute temporal-position embed-
dings 𝑃𝑢 = {p1𝑣, p2𝑣, · · · , p𝑆𝑣 } and 𝑃𝑣 = {p1𝑢 , p2𝑢 , · · · , p𝑆𝑢 } respec-
tively, where p𝑡𝑢/p𝑡𝑣 ∈ R𝑑 denotes the positional vectors at position
𝑡 . The temporal-position embeddings 𝑃𝑢/𝑃𝑣 are combined with
the temporal-order embeddings 𝑋𝑢/𝑋𝑣 to obtain user’s and item’s
temporal input embeddings 𝑍𝑢 = {e1𝑣 + p1𝑣, e2𝑣 + p2𝑣, · · · , e𝑆𝑣 + p𝑆𝑣 }
and 𝑍𝑣 = {e1𝑢 + p1𝑢 , e2𝑢 + p2𝑢 , · · · , e𝑆𝑢 + p𝑆𝑢 }, respectively. Here, we
pack the temporal input embeddings 𝑍𝑢/𝑍𝑣 together into matrices
Z𝑢 ∈ R𝑆×𝑑 and Z𝑣 ∈ R𝑆×𝑑 respectively, which are feed as input
to STAM for spatiotemporal neighbor embedding learning. Thus,
take user’s temporal order𝑇𝑢 as an example, the Scaled Dot-Product
Attention function is formulated as:

h𝑇𝑢 = softmax

(
(Z𝑢W𝑄) (Z𝑢W𝐾)𝑇√

𝐷 ′

)
(Z𝑢W𝑉) (8)

where Z𝑢 is a temporal input embedding matrix, h𝑇𝑢 ∈ R𝑆×𝐷′ de-
notes the output embedding matrix for one-hop neighbors, W𝑄 ∈
R𝑑×𝐷

′
,W𝐾 ∈ R𝑑×𝐷

′
andW𝑉 ∈ R𝑑×𝐷

′
are shared weight transfor-

mations applied to each user-item pair (𝑢, 𝑣).
Similarly, the output embedding matrix h𝑇𝑣 = {h1𝑢 ,h2𝑢 , · · · ,h𝑆𝑢 }

for item’s temporal order 𝑇𝑣 can also be represented as:

h𝑇𝑣 = softmax

(
(Z𝑣W𝑄) (Z𝑣W𝐾)𝑇√

𝐷 ′

)
(Z𝑣W𝑉) (9)

To further improve the expressivity of STAM, we adopt Multi-
Head Attention instead of performing a single attention function
to capture temporal information from different latent perspectives.
Multi-head attention has been applied in previous works [7, 27, 43],
which jointly focuses on information from different representation
subspaces. Such an attention technique is widely utilized to improve
the diversity of attention mechanisms by leveraging multiple inde-
pendent attention heads that operate on the input embedding along
with different, learnable linear projection matrices. Besides, Multi-
head attention also promotes the capacity and stability of STAM. To
be specific, multi-head attention firstly projects the temporal input
embeddings Z𝑢/Z𝑣 into 𝑘 subspaces with a variety of linear pro-
jection matrices and then employs 𝑘 Scaled Dot-Product Attention
functions in parallel to generate the output embedding matrix for
one-hop neighbors. These embeding matrix can be concatenated to
produce a combined neighbor embedding matrix. Lastly, we apply
a feed-forward neural network for dimensionality transformation.
The spatiotemporal neighbor embeddings for the central user𝑢 and
the central item 𝑣 can be calculated as:

h𝑢 = FFN(h𝑇𝑢1 · · · | |h
𝑇𝑢
𝑖
· · · | |h𝑇𝑢

𝑘
),

h𝑣 = FFN(h𝑇𝑣1 · · · | |h
𝑇𝑣
𝑖
· · · | |h𝑇𝑣

𝑘
).

(10)

where h𝑢 ∈ R𝑆×𝑑 and h𝑣 ∈ R𝑆×𝑑 denote spatiotemporal neighbor
embeddings generated bymulti-head attention,h𝑇𝑢

𝑖
/h𝑇𝑣
𝑖
∈ R𝑆×𝐷′/𝑘

represents the output embedding matrix for one-hop neighbors
from 𝑖-th Scaled Dot-Product Attention function. FFN(·) can be rep-
resented as FFN(x) = xW0 + b0, whereW0 ∈ R𝐷

′×𝑑 and b0 ∈ R𝑑
are trainable parameters. Note that spatiotemporal neighbor em-
beddings can also be represented in the form of temporal orders,
such as h𝑢 = {h𝑣1 , · · ·h𝑣𝑆 } and h𝑣 = {h𝑢1 , · · · ,h𝑢𝑆 }.

Thereafter, we calculate the aggregated neighbor embedding
from the abovementioned spatiotemporal neighbor embeddings.

STAM: A Spatiotemporal Aggregation Method for Graph Neural Network-based Recommendation WWW’22, April 25–29, 2022, Virtual Event, Lyon, France

Here, we simply utilize the mean-pooling operation to aggregate
spatiotemporal neighbor embeddings. In our experiments, we find
that the mean-pooling for spatiotemporal neighbor embeddings
leads to a good performance in general. The aggregated neighbor
embedding n𝑢/n𝑣 for the central user/item can be formulated as:

n𝑢 =
1
𝑆

𝑆∑︁
𝑖=1

h𝑣𝑖 , n𝑣 =
1
𝑆

𝑆∑︁
𝑖=1

h𝑢𝑖 . (11)

3.2 STAM for GNN-based Recommendation
In Section 3.1, we design a spatiotemporal aggregation method
(STAM) to simultaneously learn neighbor embeddings from the
perspective of spatial structure and temporal order. Here, we utilize
the proposed STAM for GNN-based recommendation to learn users
and items embeddings. Like many existing GNN-based recommen-
dation models elaborated in Section 2.1, we also stack multiple
STAM to capture higher-order interactions in the user-item bi-
partite graph. Similar to LightGCN, a state-of-the-art GNN-based
recommendation model, we also omit non-linear transformation
and aggregate spatiotemporal neighbor embeddings as the central
node embedding.

However, the abovementioned STAM will suffer from the ex-
ponentially increasing memory consumption when propagating
the spatiotemporal neighbor embeddings from the one-hop neigh-
bors layer-by-layer. Here, we learn a spatiotemporal attention
weight matrix Φ ∈ R (𝑀+𝑁)×(𝑀+𝑁) from the spatiotemporal neigh-
bor embeddings h𝑢/h𝑣 , and integrate it to adjacent matrix A ∈
R(𝑀+𝑁)×(𝑀+𝑁) . Mathematically, the matrix form of the spatiotem-
poral propagation layer can be formulated as:

h(𝑙+1) = (D−
1
2 (A ⊙ Φ)D−

1
2)h(𝑙) (12)

where h(𝑙+1) is the central embedding in (𝑙 + 1)-th layer, ⊙ denotes
the element-wise product, D is the diagonal matrix, in which each
entry 𝐷𝑖𝑖 denotes the number of nonzero entries in the 𝑖-th row
vector of the adjacency matrix A.

The final embeddings for the central user and item can be com-
puted by weighted-pooling operation. Specifically, the pooling func-
tion is applied to generate the final user/item embeddings e∗𝑢/e∗𝑣
by operating on propagated 𝐿 layers:

e∗𝑢 =

𝐿∑︁
𝑙=0

𝛼𝑙h
(𝑙)
𝑢 , e∗𝑣 =

𝐿∑︁
𝑙=0

𝛼𝑙h
(𝑙)
𝑣 (13)

where 𝛼𝑙 ≥ 0 denotes the importance of the 𝑙-th layer representa-
tion in constituting the final embedding. Similar to LightGCN [17],
we uniformly set 𝛼𝑙 as 1/(𝐿 + 1) since the concentration of this
work is not on the choice of 𝛼𝑙 .

3.3 Optimization with STAM
To optimize the parameters of STAM, we use a widely-adopted BPR
loss [34]:

L = −
∑︁
(𝑢,𝑣) ∈D
𝑣𝑛∼𝑝𝑛 (· |𝑢)

ln𝜎 (e∗𝑢
⊤e∗𝑣 − e∗𝑢

⊤e∗𝑣𝑛) + 𝜆 | |Θ| |
2
2 (14)

where 𝜎 (·) is the sigmoid function, Θ is trainable parameters, and
𝜆 controls the 𝐿2 regularization strength. 𝑣𝑛 ∼ 𝑝𝑛 (·|𝑢) represents
the negative sampling strategy.

3.4 Model Analysis
In this work, we propose STAM to aggregate one-hop neighbors
by integrating temporal information and stack multiple STAM to
capture higher-order interactions in the user-item graph for GNN-
based recommendation. STAM can be directly plugged into existing
GNN-based recommendation models by substituting the default
aggregation method. Here, we present the connection and discrimi-
nation of STAM with previous related works.

• STAM vs LightGCN. LightGCN [17] is a recent representative
graph convolutional network model for recommendation, which
learns user and item embeddings by linearly aggregating their
neighbors in the user-item interaction graph. Both STAM and
LightGCN aim to learn fine-grained user and item embeddings
for GNN-based recommendation. Unlike LightGCN that only cap-
ture spatial structural information, we support to simultaneously
capture spatial and temporal information by leveraging STAM.
• STAM vs SASRec. SASRec [22] is a recent variant of Trans-
former [43] that uses a set of trainable position embeddings
to encode the order of items in sequence for sequential recom-
mendation. Although STAM and SASRec both utilize temporal
information to learn user and item embeddings, the types of
recommendation are different. Different from SASRec for se-
quence recommendation, STAM focuses on GNN-based recom-
mendation. Besides, item embeddings in SASRec are performed
from an embedding look-up table, while in STAM are iteratively
learned by the spatiotemporal aggregation method.
• STAM vs BERT4Rec. BERT4Rec [40] is a sequential recom-
mendation model that uses deep bidirectional self-attention to
model user behavior sequences. Despite STAM and BERT4Rec
both apply Scaled Dot-Product Attention to model temporal in-
formation, STAM focuses on improving the aggregation method
by simultaneously aggregating one-hop neighbor’s information
from the perspectives of spatial structure and temporal order.
Different targets lead to different training methods. BERT4Rec
predicts the masked items using Cloze objective, while STAM
directly conducts BPR loss on the sampled training pairs.
• STAM vs DySAT. DySAT [36] is a novel neural architecture
to capture dynamic graph structural evolution. DySAT models
the dynamic graph structure into a sequence of graph snapshots.
However, temporal information in STAM is collected by user’s
behavior history. Different from DySAT that computes node rep-
resentations by stacking structural and temporal self-attentional
layers, STAM utilizes the proposed spatiotemporal aggregation
method to simultaneously learn spatiotemporal neighbor embed-
dings from the perspectives of spatial structure and temporal
order.

3.5 Time Complexity
As many existing GNN-based recommendation models, the spa-
tiotemporal aggregation operations on the user-item graph are the
main time cost. Since the multi-head attention used in the proposed
STAM is parallelizable, the time complexity for STAM with 𝑘 heads
can be expressed as 𝑂 (𝑘𝑆) where 𝑆 is the length of temporal input
𝑇𝑢/𝑇𝑣 .

WWW’22, April 25–29, 2022, Virtual Event, Lyon, France Yang and Ding, et al.

4 EXPERIMENTS
In this section, we present the details of experiment setups and the
corresponding experimental results of STAM plugged into GNN-
based recommendation in comparison with the state-of-the-art
recommendation models. We then conduct the ablation studies,
especially in comparison with previous spatial-based aggregation
methods. Finally, we analyze the impact of the hyperparameters.

4.1 Experimental Setups
4.1.1 Datasets. We conduct experiments on three widely-used
datasets collected from real-world platforms with different densities.
Table 1 shows the statistics of all datasets. Introductions about the
datasets are in Appendix A.1. Moreover, we also describe the dataset
splitting method for STAM in Appendix A.2.

Table 1: The statistics of the experimental datasets.

Dataset User Item Interactions Density Avg.length
MovieLens 6,040 3,416 999,611 4.362% 165.5
Amazon 158,650 128,939 4,701,968 0.021% 29.6
Taobao 196,840 285,869 24,938,383 0.040% 126.7

4.1.2 EvaluationMetrics. We evaluate all the models with Mean
Reciprocal Rank (MRR), Normalized Discounted Cumulative Gain
(NDCG), and Hit Ratio (HR), which are widely-used evaluation
protocols [18, 54] in top-𝐾 recommendation. We report the average
metrics for all users in the test set and compute the metrics by
ranking all items that are not interacted by a user. In our experiments,
the length of recommended list 𝐾 is set to 20 and 50. The detailed
evaluation protocol is provided in Appendix A.3.

4.1.3 Baselines. To demonstrate the effectiveness of STAM, we
utilize STAM for GNN-based recommendation and conduct compar-
ative experiments with different kinds of recommendation models,
including traditional (MostPopular, BPRMF), Neural Network-based
(NeuMF), and GNN-based (GC-MC, PinSage, NGCF, and LightGCN).
Besides, we also evaluate the performance of STAM in compari-
son with four representative sequential recommendation models,
including GRU4Rec, Caser, SASRec, and BERT4Rec. A detailed de-
scription of each baseline is provided in Appendix A.4.

4.2 Performance Comparison
4.2.1 Comparison with Representative Models. We utilize
STAM for GNN-based recommendation and compare its perfor-
mance with three types of representative models in Table 2. In
general, STAM achieves a significant improvement over baselines,
which confirms our claim that the significance of temporal infor-
mation for neighbor aggregation in GNN-based recommendation.
Besides, we elaborate exhaustive observations as follows:
• The traditional recommendation models (MostPop and BPRMF)
achieve poor performance in all cases. Compared with MostPop,
BPRMF shows better performance. The reason is that BPRMF
utilizes inner product to model user-item interactions with latent
features, while MostPop only utilizes the property of the dataset
for recommendation.
• Obviously, NeuMF consistently outperforms traditional models
across all datasets, demonstrating the importance of nonlinear
feature interactions between user and item embeddings.

• GNN-based models utilize GNN to learn embeddings for users
and items, and achieve superior performance over the above
baselines in most cases. Different from GC-MC that only adopts
the mean-pooling to aggregate first-order neighbors, NGCF and
LightGCN exploit message propagation through the graph struc-
ture and achieve significant improvements in performance. Light-
GCN outperforms both the GNN-based models, which might be
attributed to the discarding of non-linear transformation. Instead
of operating on the full graph, PinSage employs neighborhood
sampling to sample the fixed-size neighbors for aggregation. Such
sampling strategy may result in performance degradation due to
the sacrifice of a part of graph information.
• Compared to other GNN-based recommendation models that
do not integrate temporal information into aggregation, STAM
utilized for GNN-based recommendation achieves the best per-
formance on three datasets and all metrics. STAM is a universal
spatiotemporal aggregationmethod that can be naturally plugged
into existing GNN-based recommendation models. Here, we sum-
marize some reasons that contribute to the improvement in per-
formance: (1) it introduces temporal information to simultane-
ously model neighbor embedding learning from the perspectives
of spatial structure and temporal order; (2) it utilizes a powerful
attention mechanism (Scaled Dot-Product Attention) to capture
temporal order from one-hop neighbors and employs multi-head
attention to improve the expressivity; (3) it also uses message
propagation mechanism to capture higher-order user-item inter-
actions by stacking multiple STAM.
• As demonstrated in Table 2, STAM plugged with GNN-based
recommendation accomplishes the significant performance gains
of 24.32% on theMoiveLens dataset, 7.78% on the Amazon dataset,
and 12.5% on the Taobao dataset in terms of 𝑀𝑅𝑅@20 metric
against the strongest baselines. Such improvement enables us to
integrate temporal information into aggregation to benefit users
and items embedding learning for GNN-based recommendation.

4.2.2 Comparison with Sequential Models. Here, we also con-
duct experiments to compare STAM with four representative se-
quential models, including GRU4Rec, Caser, SASRec, and BERT4Rec.
Table 3 presents the overall performance of STAM and the adopted
baselines, from which we have the following observations:
• SASRec outperforms both RNN-based model GRU4Rec and CNN-
based model Caser in most cases, which confirms the superiority
of self-attention mechanism to model temporal order. By compar-
ing BERT4Rec with SASRec, we find the superiority of a bidirec-
tional model for temporal order. In STAM, we thus utilize Scaled
Dot-Product Attention to capture the temporal order of one-hop
neighbors and learn spatiotemporal neighbor embeddings from
the perspectives of spatial structure and temporal order.
• According to the results demonstrated in Table 3, STAM outper-
forms the best baseline BERT4Rec in most cases while it performs
worse than BERT4Rec in some evaluation metrics. Despite STAM
and BERT4Rec both applying Scaled Dot-Product Attention to
model temporal information, STAM only utilizes one layer of
Attention to capture temporal information in each propagation
layer while BERT4Rec stacks multiple Attention layers to learn
more complex item transition patterns. In general, STAM accom-
plishes better performance than BERT4Rec. Such improvement

STAM: A Spatiotemporal Aggregation Method for Graph Neural Network-based Recommendation WWW’22, April 25–29, 2022, Virtual Event, Lyon, France

Table 2: Performance comparison between STAM and a variety of baselines. All the numbers in the table are percentage
numbers with ‘%’ omitted.

Methods
MovieLens Amazon Taobao

Metrics@20 Metrics@50 Metrics@20 Metrics@50 Metrics@20 Metrics@50
MRR NDCG HR MRR NDCG HR MRR NDCG HR MRR NDCG HR MRR NDCG HR MRR NDCG HR

MostPop 0.81 5.05 45.00 0.99 7.26 67.98 0.15 0.41 2.67 0.17 0.62 5.41 0.10 0.61 9.80 0.11 0.78 18.07
BPRMF 1.10 6.75 57.73 1.30 9.13 80.58 0.37 0.99 6.39 0.42 1.44 11.57 0.09 0.58 10.03 0.10 0.82 20.31
NeuMF 1.79 7.96 65.96 2.07 9.15 85.40 0.47 1.24 7.69 0.53 1.85 14.32 0.15 0.96 14.73 0.17 1.24 26.60
GC-MC 1.67 10.22 64.67 1.80 11.96 82.81 0.67 1.71 9.97 0.75 2.41 17.18 0.14 1.01 15.24 0.17 1.39 28.31
PinSage 1.73 11.10 65.28 2.03 14.26 83.81 0.60 1.55 9.25 0.67 2.33 17.23 0.14 0.91 14.09 0.16 1.25 26.67
NGCF 1.75 10.78 66.82 2.04 13.58 85.38 0.74 1.87 10.75 0.83 2.71 19.30 0.21 1.34 19.89 0.24 1.76 34.17

LightGCN 1.85 11.00 66.97 2.14 13.80 86.28 0.90 2.29 12.65 1.00 3.31 22.17 0.24 1.51 21.18 0.27 1.97 36.12
STAM 2.30 13.86 71.25 2.61 16.86 89.04 0.97 2.46 13.17 1.09 3.54 23.25 0.27 1.65 22.58 0.31 2.08 37.52

%Improv. 24.32% 26.00% 6.39% 21.96% 22.17% 3.20% 7.78% 7.42% 4.11% 9.00% 6.04% 4.87% 12.5% 9.27% 6.61% 14.81% 5.58% 3.88%

Table 3: Results of STAM with sequential models.

Methods
MovieLens Amazon Taobao

MRRNDCG HR MRRNDCG HR MRRNDCG HR
GRU4Rec 2.23 11.33 66.23 0.54 1.37 8.67 0.17 1.14 16.80
Caser 2.26 11.58 67.91 0.45 1.21 7.99 0.18 1.29 18.11
SASRec 2.13 11.18 68.29 0.81 2.13 12.81 0.22 1.45 20.69

BERT4Rec 2.38 12.30 71.02 0.89 2.42 13.46 0.25 1.57 21.93
STAM 2.30 13.86 71.25 0.97 2.46 13.17 0.27 1.65 22.58

might be attributed to the spatial graph structure, which can
utilize message propagation to propagate embeddings in the
user-item graph.

4.3 Ablation Study
We first conduct an ablation study to verify the crucial role of
temporal information in GNN-based recommendation, and then
explore the impact of propagation layer numbers and input lengths.

4.3.1 STAM vs Previous Aggregation Methods. To verify the
superiority of STAM, we compare STAM with previous four rep-
resentative spatial-based aggregation methods, including “mean
pooling”, “attentive pooling”, “degree normalization”, and “central
node augmentation”. The detailed descriptions of spatial-based ag-
gregation methods are presented in Appendix A.5. Specifically, we
utilize STAM for GNN-based recommendation and substitue STAM
with the abovementioned spatial-based aggregation methods for
comparative experiments. As depicted in Figure 3, STAM is obvi-
ously superior to all spatial-based aggregation methods, verifying
that capturing temporal order of one-hop neighbors is advantageous
for neighbor embedding learning. Moreover, we also conduct a crit-
ical comparison between STAM and LSTM aggregator proposed in
GraphSAGE [14]. We adopt BiLSTM [12] to replace LSTM [13, 39]
for improving the expressiveness of aggregator. Compared to the
BiLSTM aggregator, STAM achieves better performance which sug-
gests that the self-attention mechanism is a more powerful tech-
nology for temporal order learning.

4.3.2 Impact of Layer Numbers. To analyze the impact of the
propagation layer numbers, we vary the number of propagation
layers 𝐿 in the range of {1, 2, 3, 4}. As presented in Table 4, STAM
utilized for GNN-based recommendation benefits from stacking
multiple STAM to propagate spatiotemporal neighbor embedding

on the user-item graph. Similar to many GNN-based recommenda-
tion models, stacking too many STAM also bring about the over-
smoothness issue where the performance demonstrates a peak
variation with the increasing of the number of propagation layers.

Figure 3: Results between STAM and previous aggregations.

Table 4: Results comparison of STAM at different layers.

Layers
MovieLens Amazon Taobao

MRR NDCG HR MRR NDCG HR MRR NDCG HR
1 Layer 2.17 13.59 70.73 0.89 2.28 12.46 0.23 1.47 22.29
2 Layer 2.18 13.61 72.14 0.93 2.34 12.95 0.25 1.62 22.47
3 Layer 2.30 13.86 71.25 0.97 2.46 13.17 0.27 1.65 22.58
4 Layer 2.15 13.45 70.68 0.90 2.28 13.01 0.25 1.61 22.37

4.3.3 Impact of Input Lengths. We conduct an experiment to
analyze the impact of input length 𝑆 and represent the experimental
results on 𝑀𝑅𝑅@20 in Figure 4. Specifically, we search 𝑆 in the
range of {5, 20, 50, 100, 150, 200}, and keep the best setting (𝑆 =

200 for MovieLens and 𝑆 = 50 for Amazon and 𝑆 = 100 Taobao
datasets, respectively) in our experiments. From Figure 4, it is clearly
observed that the performance of STAM fluctuates slightly with
the number of input lengths. This indicates that spatiotemporal
neighbor embeddings generated by STAM are slightly affected by
the temporal length of one-hop neighbors. Moreover, we observe
that the proper input length 𝑆 is highly dependent on the average
length of one-hop neighbors of the dataset, which enables us to set
the optimal input length from the property of the dataset.

Figure 4: Analyzing the impact of input lengths 𝑆 on GNN-
based recommendation plugged with STAM.

WWW’22, April 25–29, 2022, Virtual Event, Lyon, France Yang and Ding, et al.

4.4 Parameter Sensitivity
To test the robustness of STAM, we visualize the𝑀𝑅𝑅@20 curves
by varying the two most important hyperparameters: the number
of heads 𝑘 for multi-head attention and the hidden dimensionality 𝑑 .
Figure 5 illustrates the performance of GNN-based recommendation
utilized with STAM on the MovieLens dataset.

4.4.1 Multi-head attention. To analyze the benefits of multi-
head attention, we vary the number of attention heads 𝑘 indepen-
dently in the range of {1, 2, 4, 8, 16}. In general, STAM benefits from
multi-head attention for spatiotemporal neighbor embedding learn-
ing. The optimal performance stabilizes with 4 attention heads,
which implies that STAM can sufficiently capture temporal order of
one-hop neighbors from different latent subspaces. Overall, multi-
head attention plays a beneficial role in the expressivity of STAM.

4.4.2 Hidden Dimensionality 𝑑 . We now study the impact of
hidden dimensionality on GNN-based recommendation plugged
with STAM. We vary the hidden dimensionality from 16 to 256,
while keeping optimal hyperparameters fixed for fairness. The obvi-
ous observation is that the performance tends to converge with the
increase of dimensionality. Intuitively, a larger dimensionality will
result in better performance but a larger dimensionality leads to a
longer training time. Therefore, we need to find a proper dimen-
sionality to balance the trade-off between performance and time
consumption. In our experiments, we set the hidden dimensionality
as 64 for STAM and a variety of baselines.

Figure 5: The performance of STAMon theMovieLens dataset
by varying attention heads and hidden dimensions.

5 RELATEDWORK
5.1 GNN-based Recommendation
Recent years have witnessed the tremendous success of graph neu-
ral networks (GNNs) in recommendation systems, showing signifi-
cant performance improvements and boosting web-scale applica-
tions. Graph neural network is able to capture the higher-order
interaction in the user-item graph through iterative propagation.
GC-MC [1] applies the graph convolution network (GCN) [24] on
the user-item graph, which models the direct connections between
users and items via one convolutional layer and doesn’t fully ex-
ploit the message passing through the graph structure. STAR-GCN
[57] stacks identical GCN blocks (i.e. GC-MC) instead of directly
staking multi-layer GCNs, which alleviates the over-smoothness
issue and results in better performance compared to GC-MC. NGCF
[48] exploits the user-item graph structure by propagating embed-
dings on it, which leads to the expressive modeling of high-order
connectivity in the user-item graph. Recently, SGCN [49] argues
the unnecessary complexity of GCN, which simplifies GCN by re-
moving nonlinearities and collapsing multiple weight matrices to
one weight matrix. Inspired by the design of SGCN, LightGCN [17]

simplifies the design of GCN to make it more concise and appropri-
ate for recommendation, which learns user and item embeddings
by linearly propagating them on the user-item interaction graph
and uses the weighted sum of the embeddings learned at all layers
as the final embedding. The above methods apply GNN over the full
graph without neighborhood sampling, which preserves the origi-
nal graph structure but prevents web-scale applications due to low
generalization power. PinSage [56] combines random-walk based
sampling strategy and graph convolutions to learn the embeddings
on an item-item graph for Pinterest image recommendation.

5.2 Sequential Recommendation
Sequential recommendation captures sequential patterns among
sucessive items and recommends what the users might click next
[4, 20, 29, 35, 40, 47]. Some works adopt Markov Chain (MC) [15, 35]
to capture the item-to-item transition based on the assumption that
the most recent clicked item reflects the user’s dynamic prefer-
ence. For instance, FPMC [35] fuses an MF term and an item-item
transition term to capture long-term preferences and short-term
transitions respectively. Owing to the advantage of Recurrent Neu-
ral Network (RNN) in sequence modeling, several works employ
RNN to model user sequence patterns [19, 20, 41]. GRU4Rec [20] uti-
lizes Gated Recurrent Units (GRU) [5] to model click sequences for
session-based recommendation. Besides, Caser [42], a CNN-based
method, uses convolutional operations on the embedding matrix of
𝐿 most recent items to capture high-order Markov chains. Recently,
a new sequential model Transformer achieves state-of-the-art per-
formance on NLP tasks [43], and its proposed attention mechanism
provides a new method for sequential recommendation [26, 28].
SASRec [22] employs self-attention technique to model sequential
patterns and captures long-term semantics. BERT4Rec [40] uses a
deep bidirectional sequential model for sequential recommendation.
Besides, some studies have attempted to infer the dynamic user
preferences with sequential user interactions [2, 30, 33, 45]. With
the emerging of GNNs, some works transform sequence data into
the sequence graphs and conduct message propagation on such
graphs to model dynamic user preference [3, 51, 53].

6 CONCLUSION
In this paper, we propose a universal spatiotemporal aggregation
method named STAM to learn spatiotemporal neighbor embeddings
for neighbor embedding learning. Specifically, STAM utilizes the
Scaled Dot-Product Attention to capture temporal orders of one-hop
neighbors and employs multi-head attention to perform joint atten-
tion over different latent subspaces. We stack multiple STAM for
GNN-based recommendation to learn users and items embeddings,
in which STAM does not alter the framework of GNN-based rec-
ommendation. Experimental results on three widely-used datasets
demonstrate that STAM brings significant improvements on GNN-
based recommendation compared with spatial-based aggregation
methods, which can be plugged into GNN-based recommendation.

ACKNOWLEDGEMENTS
Thework is supported by the NSFC for Distinguished Young Scholar
(61825602), NSFC (61836013), and a research fund supported by
Alibaba Group.

STAM: A Spatiotemporal Aggregation Method for Graph Neural Network-based Recommendation WWW’22, April 25–29, 2022, Virtual Event, Lyon, France

REFERENCES
[1] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph convolu-

tional matrix completion. arXiv preprint arXiv:1706.02263 (2017).
[2] Yukuo Cen, Jianwei Zhang, Xu Zou, Chang Zhou, Hongxia Yang, and Jie Tang.

2020. Controllable Multi-Interest Framework for Recommendation. In KDD’20.
2942–2951.

[3] Tianwen Chen and Raymond Chi-Wing Wong. 2020. Handling Information
Loss of Graph Neural Networks for Session-based Recommendation. In KDD’20.
1172–1180.

[4] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and
Hongyuan Zha. 2018. Sequential recommendation with user memory networks.
In WSDM’18. 108–116.

[5] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[6] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks for
youtube recommendations. In RecSys’16. 191–198.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[8] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative memory network for
recommendation systems. In SIGIR’18. 515–524.

[9] Cédric Févotte and Jérôme Idier. 2011. Algorithms for nonnegative matrix factor-
ization with the 𝛽-divergence. Neural computation 23, 9 (2011), 2421–2456.

[10] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
2017. Convolutional sequence to sequence learning. In International Conference
on Machine Learning. PMLR, 1243–1252.

[11] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics. JMLR Workshop and Conference
Proceedings, 249–256.

[12] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech
recognition with deep recurrent neural networks. In 2013 IEEE international
conference on acoustics, speech and signal processing. Ieee, 6645–6649.

[13] Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification
with bidirectional LSTM and other neural network architectures. Neural networks
18, 5-6 (2005), 602–610.

[14] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NIPS’17. 1024–1034.

[15] Ruining He and Julian McAuley. 2016. Fusing similarity models with markov
chains for sparse sequential recommendation. In ICDM’16. IEEE, 191–200.

[16] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. InWWW’16.
507–517.

[17] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network
for Recommendation. SIGIR’20 (2020).

[18] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW’17. 173–182.

[19] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks
with top-k gains for session-based recommendations. In CIKM’18. 843–852.

[20] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[21] Santosh Kabbur, Xia Ning, and George Karypis. 2013. Fism: factored item simi-
larity models for top-n recommender systems. In KDD’13. 659–667.

[22] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In ICDM’18. IEEE, 197–206.

[23] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[24] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[25] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[26] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.
Neural attentive session-based recommendation. In CIKM’17. 1419–1428.

[27] Jian Li, Zhaopeng Tu, Baosong Yang, Michael R Lyu, and Tong Zhang. 2018. Multi-
head attention with disagreement regularization. arXiv preprint arXiv:1810.10183
(2018).

[28] Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. 2018. STAMP: short-
term attention/memory priority model for session-based recommendation. In
KDD’18. 1831–1839.

[29] Fuyu Lv, Taiwei Jin, Changlong Yu, Fei Sun, Quan Lin, Keping Yang, and Wil-
fred Ng. 2019. SDM: Sequential deep matching model for online large-scale
recommender system. In CIKM’19. 2635–2643.

[30] Chen Ma, Peng Kang, and Xue Liu. 2019. Hierarchical gating networks for
sequential recommendation. In KDD’19. 825–833.

[31] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In SIGIR’15. 43–52.

[32] Andriy Mnih and Russ R Salakhutdinov. 2007. Probabilistic matrix factorization.
NIPS’07 20 (2007), 1257–1264.

[33] Ruihong Qiu, Jingjing Li, Zi Huang, and Hongzhi Yin. 2019. Rethinking the item
order in session-based recommendation with graph neural networks. In CIKM’19.
579–588.

[34] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint
arXiv:1205.2618 (2012).

[35] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalized markov chains for next-basket recommendation. In WWW’20.
811–820.

[36] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2020.
Dysat: Deep neural representation learning on dynamic graphs via self-attention
networks. In Proceedings of the 13th International Conference on Web Search and
Data Mining. 519–527.

[37] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. In WWW’01. 285–295.

[38] J Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. 2007. Collaborative
filtering recommender systems. In The adaptive web. Springer, 291–324.

[39] Jürgen Schmidhuber and Sepp Hochreiter. 1997. Long short-termmemory. Neural
Comput 9, 8 (1997), 1735–1780.

[40] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder repre-
sentations from transformer. In CIKM’19. 1441–1450.

[41] Yong Kiam Tan, Xinxing Xu, and Yong Liu. 2016. Improved recurrent neural
networks for session-based recommendations. In DLRS’16. 17–22.

[42] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation
via convolutional sequence embedding. In WSDM’18. 565–573.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. NIPS’17 (2017).

[44] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. ICLR’18 (2017).

[45] Jianling Wang, Kaize Ding, Liangjie Hong, Huan Liu, and James Caverlee. 2020.
Next-item recommendation with sequential hypergraphs. In SIGIR’20. 1101–1110.

[46] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng
Zhang, and Dell Zhang. 2017. Irgan: A minimax game for unifying generative
and discriminative information retrieval models. In SIGIR’17. 515–524.

[47] Pengfei Wang, Jiafeng Guo, Yanyan Lan, Jun Xu, Shengxian Wan, and Xueqi
Cheng. 2015. Learning hierarchical representation model for nextbasket recom-
mendation. In SIGIR’15. 403–412.

[48] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In SIGIR’19. 165–174.

[49] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu,
and Kilian QWeinberger. 2019. Simplifying graph convolutional networks. arXiv
preprint arXiv:1902.07153 (2019).

[50] Le Wu, Yonghui Yang, Lei Chen, Defu Lian, Richang Hong, and Meng Wang.
2020. Learning to Transfer Graph Embeddings for Inductive Graph based Rec-
ommendation. In SIGIR’20. 1211–1220.

[51] ShuWu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019.
Session-based recommendation with graph neural networks. In AAAI’19, Vol. 33.
346–353.

[52] Shiwen Wu, Wentao Zhang, Fei Sun, and Bin Cui. 2020. Graph Neural Networks
in Recommender Systems: A Survey. arXiv preprint arXiv:2011.02260 (2020).

[53] Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S Sheng, Jiajie Xu, Fuzhen
Zhuang, Junhua Fang, and Xiaofang Zhou. 2019. Graph Contextualized Self-
Attention Network for Session-based Recommendation.. In IJCAI’19. 3940–3946.

[54] Jheng-Hong Yang, Chih-Ming Chen, Chuan-Ju Wang, and Ming-Feng Tsai. 2018.
HOP-rec: high-order proximity for implicit recommendation. In RecSys’18. 140–
144.

[55] Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, and Jie Tang.
2020. Understanding Negative Sampling in Graph Representation Learning.
KDD’20 (2020).

[56] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In KDD’18. 974–983.

[57] Jiani Zhang, Xingjian Shi, Shenglin Zhao, and Irwin King. 2019. Star-gcn: Stacked
and reconstructed graph convolutional networks for recommender systems. arXiv
preprint arXiv:1905.13129 (2019).

[58] Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu. 2013. Optimizing top-n
collaborative filtering via dynamic negative item sampling. In SIGIR’13. 785–788.

[59] Chuanchuan Zhao, Jinguo You, XinxianWen, and Xiaowu Li. 2020. Deep Bi-LSTM
Networks for Sequential Recommendation. Entropy 22, 8 (2020), 870.

[60] Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai.
2018. Learning tree-based deep model for recommender systems. In KDD’18.
1079–1088.

WWW’22, April 25–29, 2022, Virtual Event, Lyon, France Yang and Ding, et al.

A APPENDIX
In the appendix, we first report the implementation notes of STAM.
Then, we present datasets, dataset splitting, and evaluation metrics
in detail. Next, a detailed description of each baseline is provided.
Finally, we introduce five previous representative aggregation meth-
ods, including five spatial-based aggregators and a BiLSTM aggre-
gator.
Implementation Details. The parameters are optimized via ex-
tensive grid search on all the datasets, and early stopping is applied
to select the best models by the MRR@20 score on the validation
set. For all models, We use Adam optimizer [23] with learning rate
𝑙𝑟 = 0.001 for training. The user and item embedding dimension is
set as 64 to achieve the trade-off between the performance and time
consumption, which is determined by grid search in the range of
{16, 32, 64, 128, 256}. The batch size for the MoiveLens and Amazon
datasets and the Taobao dataset is set to 1024 and 2048, respectively.
The number of hidden units for BiLSTM is set to 32. For STAM,
we set the number of attention heads as 𝑘 = 4. The coefficient of
L2 regularization is searched in {10−5, 10−4, · · · , 10−1}. We use the
Xavier initializer [11] to initialize the model parameters. The two
aggregation layers with a fixed number of neighbors are applied
for PinSage and the number of propagation layers is set to 3 for
NGCF and LightGCN. In PinSage, the number of neighbors for two
propagation layers is set to 25 and 10, respectively. The layer com-
bination coefficient for LightGCN is uniformly set to 1

1+𝐿 where 𝐿
is the number of propagation layers.

A.1 Datasets
We use three publicly available datasets to evaluate our proposed
STAM, and the detailed descriptions are listed as follows.
• MovieLens is a widely used public movie rating dataset for both
general and sequential recommendation. We use the ML-1M
version of the MovieLens dataset and discard users and items
with less than 5 related interactions.
• Amazon∗ is a collection of products with reviews and product
metadata from Amazon [16, 31]. We conduct experiments on a
subset named Books and filter these users and items that the
number of interactions is shorter than 10.
• Taobao† is a dataset of user behaviors from the commercial
platform of Taobao [60]. The dataset contains several types of
user behaviors, including click, purchase, add-to-cart, and item
favoring. In our experiment, we only use click behaviors.

A.2 Dataset Splitting
To incorporate temporal information into aggregation methods for
GNN-based recommendation, we collect the temporal information
from user’s behavior history and build user’s entire temporal se-
quence T𝑢 . Thereafter, we split those temporal sequences T𝑢 (𝑠) to
the training, validation, and test dataset according to the times-
tamps. We hold the first 70% of interactions in each user’s temporal
sequence T𝑢 as the training set and use the next 10% of interactions
as the validation set to search the optimal hyperparameter settings
for all methods. The remaining 20% interactions are used as the test
set to evaluate the recommendation performance.
∗http://jmcauley.ucsd.edu/data/amazon/
†https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1

Thereafter, we introduce the establishment of user’s and item’s
temporal order 𝑇𝑢 = {𝑣1, · · · , 𝑣𝑆 }/𝑇𝑣 = {𝑢1, · · · , 𝑢𝑆 } for training,
where 𝑆 is the number of one-hop neighbors. If the length of tem-
poral sequence T𝑢 is less than 𝑆 , we repeatedly add a “padding”
item to the left until the length is 𝑆 . Otherwise, we truncate the
temporal sequence T𝑢 to the last 𝑆 items and build a user’s tem-
poral order 𝑇𝑢 = {𝑣1, ..., 𝑣𝑆 }. Similarly, an item’s temporal order
𝑇𝑣 = {𝑢1, ..., 𝑢𝑆 } can also be constructed by the abovementioned
operation.

A.3 Evaluation Protocol
A.3.1 Evaluation Metrics. We define the recommended list for
user 𝑢 as 𝑅𝑢 = {𝑟1𝑢 , 𝑟2𝑢 , · · · , 𝑟𝐾𝑢 }, where 𝑟 𝑖𝑢 represents the ranked at
the 𝑖-th position in 𝑅𝑢 based on the predicted score. 𝑇𝑢 is the set of
u’s interacted items in the test data.
• MRR@K: Mean Reciprocal Rank (MRR) is the average of re-
ciprocal ranks of the correctly-recommended item 𝑡 . The MRR
metric considers the order of recommendation ranking, where
a large MRR value indicates the correct recommendation at the
top of the recommended list. The MRR is set to 0 when the rank
of the correctly recommended item exceeds K.

𝑀𝑅𝑅@𝐾 =
1
𝑁

∑︁
𝑡 ∈𝑅𝑢

1
𝑅𝑎𝑛𝑘 (𝑡) (15)

where N denotes the number of users in test data.
• NDCG@K: Normalized Discounted Cumulative Gain (NDCG)
is a position-aware metric that assigns larger weights on higher
positions.

𝑁𝐷𝐶𝐺@𝐾 =
1
𝑍
𝐷𝐶𝐺@𝐾 =

1
𝑍

𝐾∑︁
𝑗=1

2𝐼 (|𝑟
𝑗
𝑢∩𝑇𝑢 |) − 1

log2 (𝑗 + 1)
(16)

where 𝐼 (𝑥) is the indicator function, and𝑍 is a normalization con-
stant denoting the ideal discounted cumulative gain (IDCG@K),
which is the maximum possible value of DCG@K.
• HR@K: Hit Ratio gives the percentage of users that can receive
at least one correct recommendation.

𝐻𝑅@𝐾 =
1
𝑁

∑︁
𝑢

𝐼 (|𝑅𝑢 ∩𝑇𝑢 |) (17)

where 𝐼 (𝑥) is the indicator function.

A.3.2 Evaluation Setup. For sequential models, we take test
sequences as inputs and obtain the embeddings of test users based
on the current model. Next, the item embeddings can be represented
by the current model. Finally, we compute the metrics by ranking
all items that are not interacted by a test user. For STAM, we obtain
user and item embeddings by leveraging STAM to GNN-based
recommendation, and then compute the metrics by ranking all
items that are not interacted by a test user.

A.4 Baselines
We collect a variety of baselines from recommendation models,
including traditional (MostPopular, BPRMF), Neural Network-based
(NeuMF), Graph Neural Networks-based (GC-MC, PinSage, NGCF,
and LightGCN), and sequential-based (GRU4Rec, Caser, SASRec,
and BERT4Rec).

STAM: A Spatiotemporal Aggregation Method for Graph Neural Network-based Recommendation WWW’22, April 25–29, 2022, Virtual Event, Lyon, France

• MostPopular is a non-personalized static method that recom-
mends the top rank items based on popularity.
• BPRMF [34] is the classical matrix factorization method for
item recommendation on implicit feedback data, which optimizes
matrix factorization via a pairwise bayesian personalized ranking
(BPR) loss.
• NeuMF [18] is a neural CF model, which uses multiple hidden
layers to capture user-item nonlinear feature interactions.
• GC-MC [1] only takes one-hop neighbors into consideration,
which models the first-order user-item interactions and ignores
the original user and item representation itself.
• PinSage [56] utilizes a random-walk based sampling strategy
to sample the fixed size of neighborhoods and propagates infor-
mation via graph convolutions, which is scalable to a web-scale
recommendation.
• NGCF [48] models multi-order connectivity in the user-item
graph via message propagation and utilizes the residual network
to get final node embedding from different layers.
• LightGCN [17] simplifies the GCN structure by removing the
feature transformation and nonlinear activation, which only uses
linear neighborhood aggregation and weighted sum of the em-
beddings at all layers as the final embedding.
• GRU4Rec [20] is the first work using RNNs to model sequential
user behaviors for the session-based recommendation.
• Caser [42] proposes convolutional neural network based method
to capture sequential structure of the 𝐿 most recent items, and
achieves better sequential recommendation performance.
• SASRec [22] uses self-attention mechanisms to identify the “rel-
evant” items from a user’s action history to predict the next item,
where a set of trainable position embeddings is applied to encode
the order of the items in a sequence.
• BERT4Rec [40] employs the deep bidirectional self-attention to
model user behavior sequences and makes the recommendations
to learn a bidirectional representation from both left and right
sides. Besides, the Cloze task that predicts the masked items using
both left and right context is used for model training.

A.5 Aggregation Methods
We collect five representative aggregation methods from previ-
ous GNN-based recommendation models and graph representation
learning. There are two types of aggregation methods, consisting of
spatial-based aggregation methods and temporal-based aggregation
methods. We firstly review the spatial-based methods, including
“mean pooling”, “attentive pooling”, “degree normalization”, and
“central node augmentation”. We then introduce the BiLSTM aggre-
gator utilized for our ablation study. Here, we take the central user
as an example and learn the aggregated neighbor embedding n𝑢 .
• Mean Pooling Aggregator. As illustrated in many GNN-based
recommendation models, mean-pooling aggregator treats the
neighbors equally to reflect the user preference. Themean-pooling
aggregator can be formulated as:

n𝑢 = 𝜎 (
∑︁
𝑣∈N𝑢

1
|N𝑢 |

e𝑣) (18)

where 𝜎 (·) is the non-linear activation function,N𝑢 is the neigh-
bors of a given user 𝑢.

• Attentive Pooling Aggregator. As proposed in GAT [44], atten-
tive pooling aggregator differentiates the importance of neigh-
bors with attention mechanism and updates the embedding of
each node (user and item) by attending over its neighbors. The
attentive pooling aggregator is defined as:

n𝑢 = 𝜎 (
∑︁
𝑣∈N𝑢

𝛼𝑢𝑣W · e𝑣) (19)

where 𝛼𝑢𝑣 is attention weights that be formulated as:

𝛼𝑢𝑣 =
exp(LeakyReLU(a · [W · e𝑢 | |W · e𝑣)])∑

𝑖∈N𝑢
exp(LeakyReLU(a · [W · e𝑢 | |W · e𝑖)])

(20)

where a andW are trainable parameters.
• Degree Normalization Aggregator. Degree normalization ag-
gregator assigns weights to nodes based on the graph structure.
As demonstrated in LightGCN, it omits non-linear transformation
where the aggregated neighbor embedding and assigns weights
based on the graph structure that can be defined as:

n𝑢 =
∑︁
𝑣∈N𝑢

1√︁
|N𝑢 |

√︁
|N𝑣 |

e𝑣 (21)

• Central Node Augmentation Aggregator. As shown in NGCF,
it decides the aggregated neighbor embedding on the affinity
between the central node. Specifically, NGCF employs element-
wise product to augment the items’ features the user cares about.
Take the central user as an example:

n𝑢 =
∑︁
𝑣∈N𝑢

1√︁
|N𝑢 | |N𝑣 |

(W1 · e𝑣 +W2 · (e𝑢 ⊙ e𝑣)) (22)

where ⊙ denotes element-wise multiplication operation.
• BiLSTM Aggregator. As proposed in GraphSAGE, LSTM aggre-
gator is utilized to model temporal order of one-hop neighbors.
However, vanilla LSTM only exploits the preceding or past in-
formation. Some works [40, 59] demonstrate that unidirectional
models are sub-optimal and restrict the power of hidden repre-
sentations, in which each item can only encode the information
from previous items. Bidirectional LSTM (BiLSTM) [12] is an
advancement of vanilla LSTM in which the forward hidden layer
is combined with backward hidden layer, that can access both the
preceding and past information. Thus, we employ BiLSTM to cap-
ture temporal order from the view of preceding and subsequent.
BiLSTM takes a user’s temporal order𝑇𝑢 = {𝑣1, 𝑣2, · · · , 𝑣𝑆 } as an
input and computes the hidden state vector for each item:

−→
h𝑖 =

−−−−→
𝐿𝑆𝑇𝑀 (®h𝑖−1, e𝑣𝑖)

←−
h𝑖 =

←−−−−
𝐿𝑆𝑇𝑀 (®h𝑖+1, e𝑣𝑖)

(23)

We obtain the final hidden representation of 𝑖-th item by con-
catenating the hidden states from both directions,

h𝑖 =
−→
h 𝑖 | |
←−
h 𝑖 (24)

Let H be a matrix consisting of output vectors [h1,h2, · · · ,h𝑆]
that the BiLSTM layer produced, where 𝑆 is the input sequence
length. The neighbor embedding can be formulated as:

n𝑢 = 𝑤⊤𝑡𝑎𝑛ℎ(H) (25)

where𝑤 is a trainable parameter vector.

	Abstract
	1 Introduction
	2 Preliminaries And Problem
	2.1 GNN-based recommendation
	2.2 Problem Statement

	3 Method
	3.1 STAM
	3.2 STAM for GNN-based Recommendation
	3.3 Optimization with STAM
	3.4 Model Analysis
	3.5 Time Complexity

	4 Experiments
	4.1 Experimental Setups
	4.2 Performance Comparison
	4.3 Ablation Study
	4.4 Parameter Sensitivity

	5 Related Work
	5.1 GNN-based Recommendation
	5.2 Sequential Recommendation

	6 Conclusion
	References
	A Appendix
	A.1 Datasets
	A.2 Dataset Splitting
	A.3 Evaluation Protocol
	A.4 Baselines
	A.5 Aggregation Methods

